Morphology and Function of Lateral Hypaxial Musculature in Salamanders1
نویسندگان
چکیده
SYNOPSIS. The lateral hypaxial musculature (LHM) of salamanders may serve as a useful model for understanding the functions of LHM in tetrapods more generally. Salamanders have between two and four layers of LHM, arranged segmentally in myomeres. These layers produce three primary mechanical actions: they bend the body, pressurize the body, and produce or resist torsion about the long axis of the body. The optimum muscle fiber angle for forceful bending is 0 to the long axis, the optimum angle for pressurization is 90 , and the optimum angle for torsion is 45 . For generating bending and torsional moments, lateral (superficial) muscle layers have greater mechanical advantage than medial (deep) layers. For increasing body pressure, by contrast, medial layers have greater mechanical advantage. A comparison of muscle fiber angles in aquatic and terrestrial salamanders reveals that some aquatic salamanders have one muscle layer with a low fiber angle which may represent a specialization for swimming. Overall, however, the fiber angles in the LHM of terrestrial and aquatic salamanders are surprisingly similar. In contrast, the pattern of fiber angles in caecilians is different, suggesting that these amphibians use their LHM differently. The fiber angle models and morphological observations presented here form a framework which may be useful in future studies of lateral hypaxial musculature.
منابع مشابه
Morphological variation of hypaxial musculature in salamanders (Lissamphibia: caudata).
Despite the acknowledged importance of the locomotory and respiratory functions associated with hypaxial musculature in salamanders, variation in gross morphology of this musculature has not been documented or evaluated within a phylogenetic or ecological context. In this study, we characterize and quantify the morphological variation of lateral hypaxial muscles using phylogenetically and ecolo...
متن کاملFunctional and Morphological Variety in Trunk Muscles of Urodela
Trunk musculature in Urodela species varies by habitat. In this study, trunk musculature was examined in five species of adult salamanders representing three different habitats: aquatic species, Amphiuma tridactylum and Necturus maculosus; semi-aquatic species, Cynops pyrrhogaster; terrestrial species, Hynobius nigrescens and Ambystoma tigrinum. More terrestrial species have heavier dorsal and ...
متن کاملMorphology and mechanics of myosepta in a swimming salamander (Siren lacertina).
In contrast to the complex, three-dimensional shape of myomeres in teleost fishes, the lateral hypaxial muscles of salamanders are nearly planar and their myosepta run in a roughly straight line from mid-lateral to mid-ventral. We used this relatively simple system as the basis for a mathematical model of segmented musculature. Model results highlight the importance of the mechanics of myosepta...
متن کاملTwisting and bending: the functional role of salamander lateral hypaxial musculature during locomotion.
The function of the lateral hypaxial muscles during locomotion in tetrapods is controversial. Currently, there are two hypotheses of lateral hypaxial muscle function. The first, supported by electromyographic (EMG) data from a lizard (Iguana iguana) and a salamander (Dicamptodon ensatus), suggests that hypaxial muscles function to bend the body during swimming and to resist long-axis torsion du...
متن کاملLocomotion pattern and trunk musculoskeletal architecture among Urodela
We comparatively examined the trunk musculature and prezygapophyseal angle of mid-trunk vertebra in eight urodele species with different locomotive modes (aquatic Siren intermedia, Amphiuma tridactylum, Necturus maculosus and Andrias japonicus; semi-aquatic Cynops pyrrhogaster, Cynops ensicauda; and terrestrial Hynobius nigrescens, Hynobius lichenatus and Ambystoma tigrinum). We found that the ...
متن کامل